NEP 29 — Recommend Python and NumPy version support as a community policy standard#
- Author:
Thomas A Caswell <tcaswell@gmail.com>, Andreas Mueller, Brian Granger, Madicken Munk, Ralf Gommers, Matt Haberland <mhaberla@calpoly.edu>, Matthias Bussonnier <bussonniermatthias@gmail.com>, Stefan van der Walt <stefanv@berkeley.edu>
- Status:
Final
- Type:
Informational
- Created:
2019-07-13
- Resolution:
https://mail.python.org/pipermail/numpy-discussion/2019-October/080128.html
Note
This NEP is superseded by the scientific python ecosystem coordination guideline SPEC 0 — Minimum Supported Versions.
Abstract#
This NEP recommends that all projects across the Scientific Python ecosystem adopt a common “time window-based” policy for support of Python and NumPy versions. Standardizing a recommendation for project support of minimum Python and NumPy versions will improve downstream project planning.
This is an unusual NEP in that it offers recommendations for community-wide policy and not for changes to NumPy itself. Since a common place for SPEEPs (Scientific Python Ecosystem Enhancement Proposals) does not exist and given NumPy’s central role in the ecosystem, a NEP provides a visible place to document the proposed policy.
This NEP is being put forward by maintainers of Matplotlib, scikit-learn, IPython, Jupyter, yt, SciPy, NumPy, and scikit-image.
Detailed description#
For the purposes of this NEP we assume semantic versioning and define:
- major version
A release that changes the first number (e.g. X.0.0)
- minor version
A release that changes the second number (e.g 1.Y.0)
- patch version
A release that changes the third number (e.g. 1.1.Z)
When a project releases a new major or minor version, we recommend that they support at least all minor versions of Python introduced and released in the prior 42 months from the anticipated release date with a minimum of 2 minor versions of Python, and all minor versions of NumPy released in the prior 24 months from the anticipated release date with a minimum of 3 minor versions of NumPy.
Consider the following timeline:
Jan 16 Jan 17 Jan 18 Jan 19 Jan 20
| | | | |
+++++|+++++++++++|+++++++++++|+++++++++++|+++++++++++|++++++++++++
| | | |
py 3.5.0 py 3.6.0 py 3.7.0 py 3.8.0
|-----------------------------------------> Feb19
|-----------------------------------------> Dec19
|-----------------------------------------> Nov20
It shows the 42 month support windows for Python. A project with a major or minor version release in February 2019 should support Python 3.5 and newer, a project with a major or minor version released in December 2019 should support Python 3.6 and newer, and a project with a major or minor version release in November 2020 should support Python 3.7 and newer.
When this NEP was drafted the Python release cadence was 18 months so a 42 month window ensured that there would always be at least two minor versions of Python in the window. The window was extended 6 months beyond the anticipated two-release interval for Python to provide resilience against small fluctuations / delays in its release schedule.
The Python release cadence increased in PEP 0602, with releases now every 12 months, so there will be 3-4 Python releases in the support window at any time. However, PEP 0602 does not decrease the support window of Python (18 months of regular full bug-fix releases and 42 months of as-needed source-only releases). Thus, we do not expect our users to upgrade Python faster, and our 42 month support window will cover the same portion of the upstream support of any given Python release.
Because Python minor version support is based only on historical release dates, a 42 month time window, and a planned project release date, one can predict with high confidence when a project will be able to drop any given minor version of Python. This, in turn, could save months of unnecessary maintenance burden.
If a project releases immediately after a minor version of Python drops out of the support window, there will inevitably be some mismatch in supported versions—but this situation should only last until other projects in the ecosystem make releases.
Otherwise, once a project does a minor or major release, it is guaranteed that there will be a stable release of all other projects that, at the source level, support the same set of Python versions supported by the new release.
If there is a Python 4 or a NumPy 2 this policy will have to be reviewed in light of the community’s and projects’ best interests.
Support Table#
Date |
Python |
NumPy |
Jan 07, 2020 |
3.6+ |
1.15+ |
Jun 23, 2020 |
3.7+ |
1.15+ |
Jul 23, 2020 |
3.7+ |
1.16+ |
Jan 13, 2021 |
3.7+ |
1.17+ |
Jul 26, 2021 |
3.7+ |
1.18+ |
Dec 22, 2021 |
3.7+ |
1.19+ |
Dec 26, 2021 |
3.8+ |
1.19+ |
Jun 21, 2022 |
3.8+ |
1.20+ |
Jan 31, 2023 |
3.8+ |
1.21+ |
Apr 14, 2023 |
3.9+ |
1.21+ |
Jun 23, 2023 |
3.9+ |
1.22+ |
Jan 01, 2024 |
3.9+ |
1.23+ |
Apr 05, 2024 |
3.10+ |
1.23+ |
Jun 22, 2024 |
3.10+ |
1.24+ |
Dec 18, 2024 |
3.10+ |
1.25+ |
Apr 04, 2025 |
3.11+ |
1.25+ |
Apr 24, 2026 |
3.12+ |
1.25+ |
Drop Schedule#
On next release, drop support for Python 3.5 (initially released on Sep 13, 2015)
On Jan 07, 2020 drop support for NumPy 1.14 (initially released on Jan 06, 2018)
On Jun 23, 2020 drop support for Python 3.6 (initially released on Dec 23, 2016)
On Jul 23, 2020 drop support for NumPy 1.15 (initially released on Jul 23, 2018)
On Jan 13, 2021 drop support for NumPy 1.16 (initially released on Jan 13, 2019)
On Jul 26, 2021 drop support for NumPy 1.17 (initially released on Jul 26, 2019)
On Dec 22, 2021 drop support for NumPy 1.18 (initially released on Dec 22, 2019)
On Dec 26, 2021 drop support for Python 3.7 (initially released on Jun 27, 2018)
On Jun 21, 2022 drop support for NumPy 1.19 (initially released on Jun 20, 2020)
On Jan 31, 2023 drop support for NumPy 1.20 (initially released on Jan 31, 2021)
On Apr 14, 2023 drop support for Python 3.8 (initially released on Oct 14, 2019)
On Jun 23, 2023 drop support for NumPy 1.21 (initially released on Jun 22, 2021)
On Jan 01, 2024 drop support for NumPy 1.22 (initially released on Dec 31, 2021)
On Apr 05, 2024 drop support for Python 3.9 (initially released on Oct 05, 2020)
On Jun 22, 2024 drop support for NumPy 1.23 (initially released on Jun 22, 2022)
On Dec 18, 2024 drop support for NumPy 1.24 (initially released on Dec 18, 2022)
On Apr 04, 2025 drop support for Python 3.10 (initially released on Oct 04, 2021)
On Apr 24, 2026 drop support for Python 3.11 (initially released on Oct 24, 2022)
Implementation#
We suggest that all projects adopt the following language into their development guidelines:
This project supports:
All minor versions of Python released 42 months prior to the project, and at minimum the two latest minor versions.
All minor versions of
numpy
released in the 24 months prior to the project, and at minimum the last three minor versions.In
setup.py
, thepython_requires
variable should be set to the minimum supported version of Python. All supported minor versions of Python should be in the test matrix and have binary artifacts built for the release.Minimum Python and NumPy version support should be adjusted upward on every major and minor release, but never on a patch release.
Backward compatibility#
No backward compatibility issues.
Alternatives#
Ad-Hoc version support#
A project could, on every release, evaluate whether to increase the minimum version of Python supported. As a major downside, an ad-hoc approach makes it hard for downstream users to predict what the future minimum versions will be. As there is no objective threshold to when the minimum version should be dropped, it is easy for these version support discussions to devolve into bike shedding and acrimony.
All CPython supported versions#
The CPython supported versions of Python are listed in the Python Developers Guide and the Python PEPs. Supporting these is a very clear and conservative approach. However, it means that there exists a four year lag between when a new features is introduced into the language and when a project is able to use it. Additionally, for projects with compiled extensions this requires building many binary artifacts for each release.
For the case of NumPy, many projects carry workarounds to bugs that are fixed in subsequent versions of NumPy. Being proactive about increasing the minimum version of NumPy allows downstream packages to carry fewer version-specific patches.
Default version on Linux distribution#
The policy could be to support the version of Python that ships by default in the latest Ubuntu LTS or CentOS/RHEL release. However, we would still have to standardize across the community which distribution to follow.
By following the versions supported by major Linux distributions, we are giving up technical control of our projects to external organizations that may have different motivations and concerns than we do.
N minor versions of Python#
Given the current release cadence of the Python, the proposed time (42 months) is roughly equivalent to “the last two” Python minor versions. However, if Python changes their release cadence substantially, any rule based solely on the number of minor releases may need to be changed to remain sensible.
A more fundamental problem with a policy based on number of Python releases is that it is hard to predict when support for a given minor version of Python will be dropped as that requires correctly predicting the release schedule of Python for the next 3-4 years. A time-based rule, in contrast, only depends on past events and the length of the support window.
Time window from the X.Y.1 Python release#
This is equivalent to a few month longer support window from the X.Y.0 release. This is because X.Y.1 bug-fix release is typically a few months after the X.Y.0 release, thus a N month window from X.Y.1 is roughly equivalent to a N+3 month from X.Y.0.
The X.Y.0 release is naturally a special release. If we were to anchor the window on X.Y.1 we would then have the discussion of why not X.Y.M?
Discussion#
References and footnotes#
Code to generate support and drop schedule tables
from datetime import datetime, timedelta
data = """Jan 15, 2017: NumPy 1.12
Sep 13, 2015: Python 3.5
Dec 23, 2016: Python 3.6
Jun 27, 2018: Python 3.7
Jun 07, 2017: NumPy 1.13
Jan 06, 2018: NumPy 1.14
Jul 23, 2018: NumPy 1.15
Jan 13, 2019: NumPy 1.16
Jul 26, 2019: NumPy 1.17
Oct 14, 2019: Python 3.8
Dec 22, 2019: NumPy 1.18
Jun 20, 2020: NumPy 1.19
Oct 05, 2020: Python 3.9
Jan 30, 2021: NumPy 1.20
Jun 22, 2021: NumPy 1.21
Oct 04, 2021: Python 3.10
Dec 31, 2021: NumPy 1.22
Jun 22, 2022: NumPy 1.23
Oct 24, 2022: Python 3.11
Dec 18, 2022: NumPy 1.24
"""
releases = []
plus42 = timedelta(days=int(365*3.5 + 1))
plus24 = timedelta(days=int(365*2 + 1))
for line in data.splitlines():
date, project_version = line.split(':')
project, version = project_version.strip().split(' ')
release = datetime.strptime(date, '%b %d, %Y')
if project.lower() == 'numpy':
drop = release + plus24
else:
drop = release + plus42
releases.append((drop, project, version, release))
releases = sorted(releases, key=lambda x: x[0])
py_major,py_minor = sorted([int(x) for x in r[2].split('.')] for r in releases if r[1] == 'Python')[-1]
minpy = f"{py_major}.{py_minor+1}+"
num_major,num_minor = sorted([int(x) for x in r[2].split('.')] for r in releases if r[1] == 'NumPy')[-1]
minnum = f"{num_major}.{num_minor+1}+"
toprint_drop_dates = ['']
toprint_support_table = []
for d, p, v, r in releases[::-1]:
df = d.strftime('%b %d, %Y')
toprint_drop_dates.append(
f'On {df} drop support for {p} {v} '
f'(initially released on {r.strftime("%b %d, %Y")})')
toprint_support_table.append(f'{df} {minpy:<6} {minnum:<5}')
if p.lower() == 'numpy':
minnum = v+'+'
else:
minpy = v+'+'
print("On next release, drop support for Python 3.5 (initially released on Sep 13, 2015)")
for e in toprint_drop_dates[-4::-1]:
print(e)
print('============ ====== =====')
print('Date Python NumPy')
print('------------ ------ -----')
for e in toprint_support_table[-4::-1]:
print(e)
print('============ ====== =====')
Copyright#
This document has been placed in the public domain.